Abstract

The photoluminescence and stimulated emission during interband transitions in quantum wells based on HgCdTe placed in an insulator waveguide based on a wide-gap CdHgTe alloy are studied. Heterostructures with quantum wells based on HgCdTe are of interest for the development of long-wavelength lasers in the range of 25–60 μm, which is currently unattainable for quantum-cascade lasers. Optimal designs of quantum wells for attainment of long-wavelength stimulated emission under optical pumping are discussed. It is shown that narrow quantum wells from pure HgTe appear to be more promising for long-wavelength lasers in comparison with wide (potential) wells from the alloy due to the suppression of Auger recombination. It is demonstrated that molecular-beam epitaxy makes it possible to obtain structures for the localization of radiation with a wavelength of up to 25 μm at a high growth rate. Stimulated emission is obtained for wavelengths of 14–6 μm with a threshold pump intensity in the range of 100–500 W/cm2 at 20 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.