Abstract

Interest in mid-infrared broadband laser light sources has surged due to applications in trace gas detection, free-space communications, and countermeasures. Progress in supercontinuum generation leverages fiber-based near-infrared and bulk-optic mid-infrared pump sources. In this paper, the Generalized Nonlinear Schrödinger Equation has been solved, using the Split Step Fourier Method, to simulate the pulse propagation and mid-infrared supercontinuum generation, inside a fiber composed of highly nonlinear As2Se3/As2S3 chalcogenide glass. The effect of various parameters, including fiber nonlinearity, Group Velocity Dispersion (GVD), input power and pulse-width, anomalous and normal dispersion pumping regime, etc. on the output supercontinuum bandwidth has been extensively studied. A tapered chalcogenide fiber is modeled to facilitate continuous simultaneous modification of the GVD and the Kerr nonlinearity parameter. Pumping the waveguides with 230-fs secant pulses at a peak power of 4.2-kW yields a mid-IR supercontinuum extending from [Formula: see text] to [Formula: see text] micrometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.