Abstract
Thermal considerations affect the performance of most microsystems. Although surface techniques can give information on the thermal properties within the material or about buried heat sources and defects, mapping temperature and thermal properties in three dimension (3D) is critical and has not been addressed yet. Infrared thermography, commonly used for opaque materials, is not adapted to semi-transparent samples such as microfluidic chips or semiconductor materials in the infrared range. This work aims at answering these needs by using the variations of transmittance with temperature to obtain information on the temperature within the thickness of the sample. We use a tunable mid-infrared light source combined with an infrared camera to measure these variations of transmittance in a glass wafer. We couple this technique with a thermal model to extract the thermotransmittance coefficient—the coefficient of temperature variation of the transmittance. We then introduce a semiempirical model based on Lorentz oscillators to estimate the temperature-dependent optical properties of our sample in the mid-IR spectral range. Combined with the measurement, this paper reports the spectroscopic behavior of the thermotransmittance coefficient in the mid-IR range and a way to predict it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.