Abstract
Polyphenols were reported to exhibit inhibitory effects on digestive enzymes to regulate carbohydrates and lipid digestion. However, different cooking methods might cause differences in the composition of polyphenols in cereal grains and thus further affect their activities. The present study used boiling, roasting and microwaving to cook black quinoa and extracted polyphenols from them. Their total phenolic content (TPC) and total flavonoids content were determined, and phenolic composition was analyzed via high-performance liquid chromatography-mass spectrometry (HPLC-MS). Compared with other cooking methods, phenolic extract from microwaved black quinoa (PEM) showed the highest TPC value (about 2.64 mg GAE g-1 ). Microwaving released more phenolic acids (ferulic acid and gallic acid) from black quinoa grains. PEM also exhibited the strongest antioxidant and α-glucosidase inhibitory activities. Lineweaver-Burk plots showed that PEM inhibited α-glucosidase in an uncompetitive mode, which was supported by circular dichroism analysis. PEM further reduced about 20.04% of digested starch in an in vitro digestion model and suppressed postprandial blood glucose increases (about 16.91% reduction) in vivo. Collectively, our data suggested that microwaving could be an ideal method to cook quinoa in regards of its polyphenols in management of postprandial blood glucose. © 2022 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.