Abstract
Based on bioisosteric similarities with isoniazid, a series of 1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives has been designed. The target compounds have been synthesized by multicomponent reaction which involves one-pot organic reactions using ethylcyanoacetate, urea/thiourea and arylaldehydes in presence of ethanolic K2CO3. Two methodologies, conventional and microwave-assisted, have been adopted for the synthesis. The later strategy gave high yields in less than 10min as compared to long hours using the former approach. Molecular docking of the target compounds into the enzyme Mycobacterium tuberculosis enoyl reductase (InhA) revealed important structural information on the plausible binding interactions. Major binding interactions were found to be of dispersion type (residues Tyr158, Ile215, Met103 and Met199) and a hydrogen bond with Tyr158. Binding poses of the all the compounds were energetically favorable and showed good interactions with the active site residues. Few selected compounds were also evaluated for antitubercular activity in vitro against drug-sensitive M. tuberculosis H37Rv strain and clinically isolated S, H, R and E resistant M. tuberculosis by luciferase reporter phage (LRP) assay method. Some compounds displayed promising antimycobacterial activity comparable or less than the standard drugs isoniazid and rifampicin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.