Abstract

A novel design for a vectorial vortex beam launcher in the microwave regime is devised. The beam is formed by launching a single guided transverse electric (TE) mode of a metallic circular waveguide into free-space. Excitation is achieved by the mean of an inserted coaxial loop antenna. Modal expansion coefficients are computed, and the resulting electric and magnetic fields are determined. The effect of the antenna location inside the waveguide on its effective input impedance is modelled using transmission-line relations and location for optimal matching is established. The analytical results are confirmed using multi-level fast multipole method full-wave simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.