Abstract

Abstract This work reports and compares the structural crystallochemical transformations occurring during the microwave and conventional porcelain manufacture. Batches of greenware (just dried) porcelain pieces are microwave and electrically fired at increasing temperatures, from 420 °C up to 1100 °C. Crystallochemical transformations are identified by X-ray diffraction (XRD) analysis and compared the results from samples microwave and conventionally fired. Microwave fired samples show the full and rapid collapse of kaolinite structure for firing temperatures just above 500 °C, whereas the collapse of kaolinite structure of the electrically fired samples is progressive, from about 500 °C up to 950 °C. Muscovite structure totally collapses at about 950 °C for microwave fired greenware samples, whereas muscovite structure total collapse only occurs at about 1050 °C for electrically fired greenware samples. Microwave and electric firing lead to appreciable differences in the sanidine–orthoclase–microcline structural transformations. Mullite formation could be identified in the microwave fired samples at temperatures 50 °C lower than in the electrically fired ones, especially for the conventional firing temperatures above 1050 °C, the same temperature reported in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call