Abstract

AbstractThis paper provides an overview of the macroscopic properties of porcelain tableware fired in a microwave furnace with six magnetrons (each with a nominal power of 900 W) operating at the frequency of 2.45 GHz. The dependence of firing temperature on physical properties such as shrinkage, water absorption, apparent porosity, bulk density, and impact resistance was analyzed. Emphasis is on the differences in the macroscopic properties of microwave and conventionally (gas and electric) fired porcelain. Batches were fired from room temperature up to above the optimum firing temperature (1380°C). Results show similar macroscopic properties for both firing methods, microwave heating required lower firing temperatures (between 1300°C and 1350°C), and shorter processing times (about 70 minutes). The main differences between microwave and electric firing methods occur in a temperature band of 300°C above the porcelain eutectic temperature (close to 1000°C).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.