Abstract
We report high-sensitivity microwave measurements of the in-plane penetration depth lambda_{ab} and quasiparticle scattering rate 1/tau in several single crystals of the hole-doped Fe-based superconductor Ba(1-x)K(x)Fe(2)As(2) (x approximately 0.55). While a power-law temperature dependence of lambda_{ab} with a power approximately 2 is found in crystals with large 1/tau, we observe an exponential temperature dependence of the superfluid density consistent with the existence of fully opened two gaps in the cleanest crystal we studied. The difference may be a consequence of different levels of disorder inherent in the crystals. We also find a linear relation between the low-temperature scattering rate and the density of quasiparticles, which shows a clear contrast to the case of d-wave cuprate superconductors with nodes in the gap. These results demonstrate intrinsically nodeless order parameters in the Fe arsenides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.