Abstract

We present measurements of the ab-plane magnetic penetration depth, lambda(T), in five optimally doped Pr(1.855)Ce(0.145)CuO(4-y) films for 1.6 K< or =T < or =T(c) approximately 24 K. Low resistivities, high superfluid densities n(s)(T) proportional, variant lambda(-2)(T), high T(c)'s, and small transition widths are reproducible and indicative of excellent film quality. For all five films, lambda(-2)(T)/lambda(-2)(0) at low T is well fitted by an exponential temperature dependence with a gap, Delta(min), of 0.85k(B)T(c). This behavior is consistent with a nodeless gap and is incompatible with d-wave superconductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call