Abstract

The microwave spectra of the HCCS and DCCS radicals are studied in the frequency range of 160–400 GHz and the rotational transition series are assigned to several low-lying vibronic states in the CCS or H(D)CC bending vibration. Analysis is carried out to obtain effective constants for respective vibronic states. The γeff constants for the vibronic μ/κ2Σ states are found to be anomalous, in that the variation of the γeff constants in the same bending mode is large up to 3 GHz and the γeff value can reach to nearly twice the rotational constants Bv. This behavior cannot be understood by the current Renner–Teller theory. We have developed a theory to include cross vibronic interaction between two vibronic 2Σ(vt=1) states in different bending modes. Since the difference of the vibrational quantum numbers for these states is Δ(v4+v5)=0, the interaction has a much larger effect than the one considered by Petelin and Kiselev [Int. J. Quantum Chem. 6, 701 (1972)] for the vibronic states with Δ(v4+v5)=±2. Calculation with the newly derived expressions for γeff reproduces the anomaly in HCCS when the Renner parameters are fixed at ε4=−0.37 and ε5=+0.10 from the ab initio calculation, and the parameter |ε45| for the cross vibronic interaction is varied to be 0.4, a value which is obtained for the first time. The relative sign of the above ε4 and ε5 values is explicitly judged to be correct. In addition, the Beff and the P-doubling constants in the 2Πi and 2Δi states are found to be effected by a higher-order perturbation of the cross vibronic interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.