Abstract

The present paper focus on preliminary work carried out at INETI concerning the use of microwave radiation applied to sintering of both ceramic and metal powders. Due to the characteristics of materials-radiation interaction, microwaves can become an interesting power source in powder technology and other processing routes, since it is possible to lower the sintering temperature and shorten the sintering cycles, leading to time and energy savings. Alumina, hydroxyapatite, titanium and stainless steel powder compacts were sintered in a modified commercial oven of 2.45GHz and 1000W nominal power. Microwave susceptors were used to enable temperature rise during the initial stage of the sintering cycles. Results on densification and microstructural evaluation of microwave sintered samples are reported and compared to conventionally sintered ones, when available. For similar porosity levels upon sintering, microwave radiation generally reduces sintering times from several hours to minutes. The results obtained so far are quite encouraging since in the case of alumina and stainless steel compacts, a decrease of about 200°C in the sintering temperature was achieved. It was also found that the green density plays a key role in the densification of both metallic and ceramic powders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call