Abstract
Quantum reservoir computing (QRC) has been proposed as a paradigm for performing machine learning with quantum processors where the training takes place in the classical domain, avoiding the issue of barren plateaus in parameterized-circuit quantum neural networks. It is natural to consider using a quantum processor based on microwave superconducting circuits to classify microwave signals that are analog—continuous in time. However, while there have been theoretical proposals of analog QRC, to date QRC has been implemented using the circuit model—imposing a discretization of the incoming signal in time. In this paper we show how a quantum superconducting circuit comprising an oscillator coupled to a qubit can be used as an analog quantum reservoir for a variety of classification tasks, achieving high accuracy on all of them. Our work demonstrates processing of ultra-low-power microwave signals within our superconducting circuit, a step towards achieving a quantum sensing-computational advantage on impinging microwave signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.