Abstract
Accurate determination of sodium chloride (NaCl) density in water is vital for assessing environmental impact, preventing soil salinization in agriculture, ensuring quality and consistency in industrial processes, facilitating medical treatments, and maintaining taste and preservation standards in the food and beverage industry. This paper introduces a novel microwave sensor design specifically tailored to accurately assess NaCl density in aqueous solutions. Starting with a standard solution of 10 g of salt dissolved in 100 ml of water, resulting in a molarity of approximately 1.71 M, five distinct samples are meticulously prepared. These samples cover a range of NaCl concentrations, with different ratios of salt solution and drinking water, including pure water, 10 ml of salt solution with 90 ml of water, 20 ml of salt solution with 80 ml of water, 30 ml of salt solution with 70 ml of water, and 40 ml of salt solution with 60 ml of water. Each sample undergoes analysis using the developed microwave sensor to determine its transmission coefficient. The magnitude of the transmission coefficient is closely tied to the density of the salt solution based on molarity. Through a detailed regression analysis, a strong quantitative relationship between the transmission coefficient and salt solution density is revealed. This correlation can be accurately represented by a third-order polynomial equation. This research is significant as it advances microwave sensor technology, allowing for accurate and efficient measurement of NaCl density in water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Engineering Technology and Applied Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.