Abstract
Droplet-based microfluidics is an emerging high-throughput screening technology finding applications in a variety of areas such as life science research, drug discovery and material synthesis. In this paper we present a cost-effective, scalable microwave system that can be integrated with microfluidic devices enabling remote, simultaneous sensing and heating of individual nanoliter-sized droplets generated in microchannels. The key component of this microwave system is an electrically small resonator that is able to distinguish between materials with different electrical properties (i.e. permittivity, conductivity). The change in these properties causes a shift in the operating frequency of the resonator, which can be used for sensing purposes. Alternatively, if microwave power is delivered to the sensing region at the frequency associated with a particular material (i.e. droplet), then only this material receives the power while passing the resonator leaving the surrounding materials (i.e. carrier fluid and chip material) unaffected. Therefore this method allows sensing and heating of individual droplets to be inherently synchronized, eliminating the need for external triggers. We confirmed the performance of the sensor by applying it to differentiate between various dairy fluids, identify salt solutions and detect water droplets with different glycerol concentrations. We experimentally verified that this system can increase the droplet temperature from room temperature by 42 °C within 5.62 ms with an input power of 27 dBm. Finally we employed this system to thermally initiate the formation of hydrogel particles out of the droplets that are being heated by this system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.