Abstract

Theoretical calculations of the upwelling microwave radiances from clouds containing layers of rain, ice, and a melting region were performed at frequencies of 18, 37, and 92 GHz. These frequencies coincide with high-resolution microwave radiometer measurements taken aboard the NASA ER-2 high-altitude aircraft during the summer 1986 Cohmex (Cooperative Huntsville Meteorological Experiment) in Alabama. For purposes of brightness temperature computations, the storms were modeled with rain, melting phase, and ice layers. The melting phase region was composed of water-coated ice spheres defined by a 'melt index' in terms of the volume fraction of water. Single scatter albedo, scattering, and extinction coefficients were computed at the above frequencies as a function of the rain rate and melt index. In addition, multiparameter radar observations of the storm were mapped into a Cartesian space and averaged over regions comparable to the radiometer footprint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.