Abstract

AbstractJuno's microwave radiometer experiment (MWR) provided the first spatially resolved observations beneath the surface of Ganymede's ice shell. The results indicate that scattering is a significant component of the observed brightness temperature, which is a combination of the upwelling ice emission and reflected emission from the sky and from Jupiter's synchrotron emission (Brown et al., 2023). Retrieval of the sub‐surface ice temperature profile requires that these confounding signals are estimated and removed to isolate the thermal signature of the ice. We present data analysis and model results to estimate the reflected synchrotron emission component. Our results indicate reflected emission over a broad range of observed angles, due to surface roughness and internal scattering. Based on viewing geometry, direct specular reflection from a smooth surface at a narrow angle is not observed. A microwave‐reflective medium is indicated, that is, a very rough surface and/or non‐homogeneous subsurface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.