Abstract

Pinus caribea (pine) litter flame is a weakly ionized medium. Electron–neutral collisions are a dominant form of particle interaction in the flame. Assuming flame electrons to be in thermal equilibrium with neutrals and average electron–neutral collision frequency to be much higher than the plasma frequency, the propagation of microwaves through the flame is predicted to suffer signal intensity loss. A controlled fire burner was constructed where various natural vegetation species could be used as fuel. The burner was equipped with thermocouples and used as a cavity for microwaves with a laboratory quality network analyser to measure wave attenuation. Electron density and collision frequency were then calculated from the measured attenuation. The parameters are important for numerical prediction of electromagnetic wave propagation in wildfire environments. A controlled pine litter fire with a maximum flame temperature of 1080 K was set in the burner and microwaves (8–10.5 GHz) were caused to propagate through the flame. A microwave signal loss of 1.6–5.8 dB was measured within the frequency range. Based on the measured attenuation, electron density and electron–neutral collision frequency in pine fire were calculated to range from 0.51–1.35 × 1016 m−3 and 3.43–5.97 × 1010 s−1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.