Abstract
Microwave (MW)-induced shape-memory poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) interpenetrating polymer networks (SMP-IPNs) were prepared through in situ polymerization. Silicon carbide (SiC) nanoparticles were modified by 3-(methacryloyloxy) propyltrimethoxysilane (KH570). 3-(Methacryloyloxy) propyltrimethoxysilane was covalently bonded on the surface of SiC through the reaction of silanol and the methoxy groups. The polymerization of acrylic acid (AA) using N,N′-methylenebis (2-propenamide) (MBA) as cross-linker in PVA solution was initiated through the double bonds of KH-570 grafted on SiC, leading to a PAA polymer network cross-linked with MBA. The PVA molecular chains run through the PAA cross-linking network and form an IPN structure. Therefore, SiC as a strong MW absorbing material could be chemically cross-linked into polymer matrix. The effect of composition on the properties of SMP-IPN was studied using dynamic mechanical analysis, dielectric properties and shape memory effect (SME) test. The results showed that the introduction of SiC in IPNs not only provided samples with excellent MW-induced shape memory effect (SME), but also caused a higher equilibrium temperature under MW irradiation. Moreover, both SiC content and applied MW power affected the shape recovery properties of PVA/PAA interpenetrating composites. MW-induced SMPs offered great advantages such as fast recovery, high recovery rate, and remote actuation. This study provides the potential applications of the fast and environmentally friendly SMPs used as MW-responsive sensors, implantable devices, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.