Abstract

Interpenetrating polymer networks (IPNs) composed of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAAc) exhibited electrical-sensitive behavior. PAAc as an initial network was prepared inside a PVA solution using UV irradiation; then, PVA networks as a secondary network were formed by a repetitive freeze–thawing process. Their mechanical properties were influenced by the swelling ratio, crosslinking by UV radiation and a freeze–thawing process, and intermolecular force by hydrogen bonding. When a swollen PVA/PAAc IPN was placed between a pair of electrodes, the IPN exhibited bending behavior upon the applied electric field. The equilibrium bending angle (EBA) and the bending speed of the PVA/PAAc IPN increased with the applied voltage and the content of the PAAc network having negatively charged ionic groups within the IPN. The electroresponsive behavior of the present IPN was also affected by the electrolyte concentration of the external solution. Particularly, IPN37 showed a maximum EBA when the critical ionic strength was 0.1. Anisotropic deswelling of the IPN was observed in a direct contact with a pair of electrodes under aerobic conditions. The PVA/PAAc IPN also showed stepwise bending behavior depending on the electric stimulus. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1675–1683, 1999

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call