Abstract
Based on an earlier charge control analysis, we have constructed a microwave circuit model of a three-port quantum-well (QW) transistor laser (TL) by extending Kirchhoff’s law to include electron-photon interaction, to yield an electrical-optical form of Kirchhoff’s law. The TL circuit model includes both intrinsic device elements and extrinsic parasitic elements, and fits accurately measured microwave S-parameters upto 20 GHz and matches also measured eye-diagram data up to 13 Gb/s (equipment-limited). The TL model yields both electrical and optical device parameters as well as physical quantities such as QW charge density, nQW∼1016 cm−3, which is useful in the analysis of the device physics of TL operation. The low density indicates that the base QW charge level is not as important as the current driving the QW and supplying electron-hole recombination, and implies that the quasi-Fermi level is discontinuous in the TL base. The model is used to simulate a directly modulated TL up to 40 Gb/s, for example, a TL employed in an optical communication link.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.