Abstract

We developed a photochemical method for the online oxidation of p-hydroxymercurybenzoate (PHMB), an organic mercury species widely used for mercaptan and thiolic compound labeling. The method is based on a fully integrated online UV/microwave (MW) photochemical reactor for the digestion of PHMB, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. The MW/UV process led to the quantitative conversion of PHMB and thiol-PHMB complexes to Hg(II), with a yield between 91% and 98%, without using chemical oxidizing reagents and avoiding the use of toxic carcinogenic compounds. This reaction was followed by the reduction of Hg(II) to Hg(0), performed in a knitted reaction coil with NaBH(4) solution, and AFS detection in an Ar/H(2) miniaturized flame. The low MW power applied (18 W) allowed us to keep constant the temperature of the photochemical reactor (21 ± 1 °C), using a flowing water bath. This avoided peak widening due to diffusion processes generally occurring at high temperatures and in the additional cooling coil. This method has been applied to the determination of thiols in human plasma, blood, and wine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call