Abstract
In this work, we propose the microwave-assisted hydrothermal activation method to synthesize supercapacitor electrode materials from corn straw under a small amount of the potassium catalyst (30 wt %), which can meet the environmental protection and low-cost requirement. With the extension of radiation time from 40 to 100 min, the pore structure of hydrochar expands from the micropore to hierarchical pore, and the microstructure evolves from an amorphous structure to graphene-like sheets. Microwave-assisted hydrothermal activation can control the synergistic development of hierarchical pore and graphene-like sheets of hydrochar under the condition of using a lesser amount of the catalyst. The as-obtained HTC-40/70/100 shows an excellent graphitization degree and the developed hierarchical pores. By comparing the electrochemical performance of the symmetrical capacitor devices composed of corn straw hydrochar and pyrochar in organic electrolytes, we have found that the hydrochar is suitable for organic system symmetric capacitance, and the pore structure and graphitization degree are closely related to the transmission of ions and electrons in the electrolyte. Therefore, HTC-100 with a high specific surface area (1781 m2/g) and highly ordered microstructure has the best electrochemical performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.