Abstract
A facile microwave-assisted solvothermal method was developed for the controlled synthesis of novel 3D CdS structures. Dendrite-, star-, popcorn- and hollow sphere-like CdS structures could be obtained by changing the reaction conditions including the reaction temperature and the amounts of reagents and solvents. The products were examined by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman and photoluminescence spectroscopy. Results revealed that the final structures were related to the solvent properties such as surface tension and viscosity. The degree of supersaturation is also responsible for the morphology variation and it can be adjusted by the reaction temperature. The CdS products with different morphologies exhibited interesting shape-dependent optical properties and photocatalytic activities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have