Abstract
In this work, the effect of microwave-assisted acid treatments on the morphological and crystallochemical characteristics of chrysotile fibers is investigated. A low concentration of nitric acid (0.2 N) is used to remove Mg2+-species located in the octahedral sheet of its structure, thereby causing a crystallo-chemical change forming a skeleton of non-crystalline amorphous silica. This skeleton maintains an elongated morphology but characterized by rounded -not sharp-edges and porous surfaces whose physical resistance under stress is reduced when compared with the initial fibers of chrysotile, favoring a lower pathogenicity of the fibers. Thus, microwave-assisted acid treatment rise as a low-cost, fast and effective option in avoiding the dangerousness associated with asbestos waste management.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have