Abstract
Calorimetry of reactions involving nanomaterials is of great current interest, but requires high-resolution heat flow measurements and long-term thermal stability. Such studies are especially challenging at elevated reaction pressures and temperatures. Here, we present an instrument for measuring the enthalpy of reactions between gas-phase reactants and milligram scale nanomaterial samples. This instrument can resolve the net change in the amount of gas-phase reactants due to surface reactions in an operating range from room temperature to 300 °C and reaction pressures of 10 mbar to 30 bar. The calorimetric resolution is shown to be <3 μW/√Hz, with a long-term stability <4 μW/hour. The performance of the instrument is demonstrated via a set of experiments involving H2 absorption on Pd nanoparticles at various pressures and temperatures. For this specific reaction, we obtained a mass balance resolution of 0.1 μmol/√Hz. Results from these experiments are in good agreement with past studies establishing the feasibility of performing high resolution calorimetry on milligram scale nanomaterials, which can be employed in future studies probing catalysis, phase transformations, and thermochemical energy storage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have