Abstract

Ampullary electroreceptor organs of catfish show a band-pass-filter characteristic on sinusoidal electric stimulation. The structures and processes which are responsible for the frequency characteristics are not fully understood. To investigate the role of the apical membrane and its microvilli in signal filtering, the ampullary organs were apically exposed to the actin filament disrupting agent cytochalasin B. Electrophysiological data showed that cytochalasin B treatment reduced the absolute sensitivity to about 20% over the whole frequency range. The decrease in sensitivity at 20 Hz, however, was less than at other frequencies. The phase lags at 14 and 20 Hz became less negative, indicating a relatively better transduction at high frequencies. Calculations with an electric equivalent circuit of an electroreceptor cell indicated that a reduction in apical surface area in combination with a reduction of the number or the conductivity of apical ion channels can explain such effects. We conclude that, although only the basal membrane is thought to be involved in stimulus transduction, the apical membrane contributes considerably to the frequency characteristics of ampullary electroreceptor organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.