Abstract

Microtubule inhibitors are widely used in cancer chemotherapy, but the signaling mechanisms that link microtubule disarray to destructive or protective cellular responses are poorly understood. Because members of the mitogen-activated protein kinase (MAPK) family have been implicated in regulation of cell survival and cell death, we examined the extent and kinetics of activation of JNK, ERK, and p38 MAPKs in response to treatment of KB-3 carcinoma cells with several microtubule inhibitors. All four agents tested (vinblastine, vincristine, Taxol, and colchicine) caused significant (6- to 13-fold) activation of JNK, concomitant inactivation of ERK, and a reduction in basal p38 MAPK activity. JNK activation and ERK inactivation occurred prior to caspase 3 activation. The microtubule inhibitors also induced phosphorylation of Raf-1 kinase. SEK-1, upstream of JNK, was also activated and phosphorylated in response to the microtubule inhibitors, and sustained phosphorylation of three endogenous JNK substrates (c-Jun, ATF-2, and JunD) was observed. By comparison, the antitumor agent doxorubicin induced activation of JNK and p38 but had no effect on ERK activity or Raf-1. These data demonstrate that microtubule inhibitors elicit distinct and specific effects on MAPK-mediated signaling pathways and suggest in particular that coordinate and reciprocal alterations in JNK and ERK activities are important facets of the cellular response to microtubule disruption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.