Abstract
Effects of estrogens on the cytoplasmic microtubule network were examined by the indirect immunofluorescence method using anti-beta-tubulin antibody. Estradiol, a naturally occurring estrogen, decreased the amount of cytoplasmic microtubule fibers during interphase in the human breast cancer cell lines MCF-7 and MDA-MB-231. Since MDA-MB-231 is an estrogen receptor-negative cell line, estradiol-induced microtubule disruption seems to be independent of estradiol binding to receptors. The effective concentration of estradiol required for induction of microtubule disruption in 50% of the cells (EC50) was 81 microM for MCF-7 cells and 82 microM for MDA-MB-231 cells. A synthetic estrogen, diethylstilbestrol, also induced a decrease in microtubule fibers, with an EC50 value of 48 microM for MCF-7 cells and 50 microM for MDA-MB-231 cells. When estrogen-treated and microtubule-depolymerized cells were washed and the medium was replaced with fresh, intracellular microtubule networks reappeared within 3 h. When MCF-7 cells were cultured for 4 days with estradiol (50 microM), cell growth was completely inhibited. However, estrone affected the microtubule network and cell proliferation only slightly. These results suggest that estradiol-induced microtubule disruption is closely related to its inhibitory effect on cell growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.