Abstract

Homologous long non-coding RNAs (lncRNAs) are elusive to identify by sequence similarity due to their fast-evolutionary rate. Here we develop LincOFinder, a pipeline that finds conserved intergenic lncRNAs (lincRNAs) between distant related species by means of microsynteny analyses. Using this tool, we have identified 16 bona fide homologous lincRNAs between the amphioxus and human genomes. We characterized and compared in amphioxus and Xenopus the expression domain of one of them, Hotairm1, located in the anterior part of the Hox cluster. In addition, we analyzed the function of this lincRNA in Xenopus, showing that its disruption produces a severe headless phenotype, most probably by interfering with the regulation of the Hox cluster. Our results strongly suggest that this lincRNA has probably been regulating the Hox cluster since the early origin of chordates. Our work pioneers the use of syntenic searches to identify non-coding genes over long evolutionary distances and helps to further understand lncRNA evolution.

Highlights

  • Identifying and understanding the factors that underlie the evolution of morphological complexity is one of the central issues in the field of evolutionary developmental biology

  • The study of long non-coding RNAs (lncRNAs) from an evolutionary perspective has been hindered by their lack of strong primary sequence conservation [8,9], their apparent lack of secondary structure conservation [10], and their massive genomic generation and decay rate [11]

  • We used the intergenic and bidirectional fractions from the lncRNAs dataset provided by Marlétaz et al [15] to obtain an amphioxus lincRNA fraction (1318 genes), and their protein-coding genes supported by orthology as the coding fraction (10,832 genes)

Read more

Summary

Introduction

Identifying and understanding the factors that underlie the evolution of morphological complexity is one of the central issues in the field of evolutionary developmental biology (or evo-devo). From the initial claims that gene duplication and neofunctionalization were at the core of phenotypic change [1], the current view takes into account the fine-tuning of gene regulation [2] and increasing the proteome and interactome complexity through additional processes. In this regard, molecular mechanisms such as alternative splicing or RNA-editing, and the RNA world, with molecules like small miRNA or long non coding RNAs (lncRNAs), allow deeper and multifaceted levels of gene regulation [3].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.