Abstract

Two layers of FeCoNiCrAl coatings were prepared on copper (Cu) alloys substrates in this paper in order to improve the wear and corrosion performance of Cu alloys and to reduce the dilution of Cu in the laser cladding (LC) process. The microstructures, phase composition, microhardness, and crystal structure of the resulting coatings were analyzed, and their high-temperature tribological and electrochemical properties were tested. The results show that the surface of the HEA coatings still consists of a single-phase body-centered cubic (BCC) with low Cu content, and no generation of a second phase was observed. Compared with the substrate, the FeCoNiCrAl HEA coatings have better wear resistance, with oxidative wear and slight adhesive wear as the wear mechanism at 250 ℃. In addition, the FeCoNiCrAl HEA coating showed better electrochemical corrosion performance in 3.5 wt% NaCl solution. The corrosion mechanism is that the dense oxide layers inhibit the erosion of Cl- and high reaction barriers slow down electrochemical reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.