Abstract
Microstructures and phase compositions of as-cast and extruded ZK60–xDy (x = 0–5) alloys were analysed by optical microscope, scanning electron microscope, X-ray diffraction and differential scanning calorimetry. Meanwhile, the tensile mechanical property was tested. With increasing Dy content, Mg–Zn–Dy new phase increases gradually, while MgZn2 phase decreases gradually to disappear. As-cast microstructure is refined gradually; meanwhile extruded one is refined further with decreasing average grain size to 1 μm for ZK60–4·32Dy alloy. Second phase, tending to distribute along grain boundary by continuous network in as-cast state, breaks and distributes dispersedly in extrusion state. As-cast tensile mechanical property remains almost unchanged at ambient temperature; however, extruded ones are enhanced significantly at ambient and elevated temperatures, respectively. Tensile strength at 298 and 473 K increases gradually from 355 and 120 MPa for ZK60 alloy to 395 and 171 MPa for ZK60–4·32Dy alloy, respectively. Extruded tensile fractures exhibit a typical character of ductile fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.