Abstract

-matrix composites reinforced with and SiC particles were fabricated by means of wet-mixing and heat-pressing process. Scanning electron microscope (SEM), X-ray diffractometry (XRD), polarizing microscopy, Vickers hardness tester, with a universal materials testing machine were used to investigate the morphology, grain size, hardness, fracture toughness, and bending strength of the synthesized composites. Notable effects on the bending strength and fracture toughness of caused by the addition of SiC and particles were found. The composite with 20 vol.% SiC and 20 vol.% Si3N4 particles has the highest strength and toughness, which is about 100% and 340%, respectively, higher than that of pure . The grain size of decreases gradually with the volume content of SiC and particles increasing from 0% to 40%, and -20 vol% SiC-20 vol% Si3N4 composite exhibits the minimum grain size of . The relationship between the grain size of and bending strength is not entirely fit with Hall-Petch equation. The strengthening mechanisms of the composite include fine-grain strengthening and dispersion strengthening. The toughening mechanisms of the composite include fine grain, microcracking, crack deflection, crack microbridging, and crack branching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.