Abstract
Microstructures and magnetic domain structures of precipitation-hardened Sm(Co0.720Fe0.200Cu0.055Zr0.025)7.5 permanent magnets obtained by various heat treatments are investigated by transmission electron microscopy (TEM). It is found that Cu atoms gradually segregate into SmCo5 phase with the increase in aging time. The domain walls in the solution-treated, 6-h isothermal-aged magnets are straight, while those in the step-aged magnet are zigzag shaped along the cell boundaries of the SmCo5 phases (1:5 H phases). In the demagnetized state of the step-aged magnet, it is found that the domain wall is located almost on the 1:5 H cell boundary phase containing Cu atoms, where the distribution of lines of magnetic flux strongly deviates from the axis of easy magnetization, particularly near the zigzag domain wall, and the lines of magnetic flux flow symmetrically along the center of the 1:5 H cell boundary phase. In the remanent state of the step-aged magnet, it is confirmed that domain walls are strongly pinned almost to the 1:5 H cell boundary phase containing Cu atoms, eventually resulting in a high coercivity in a Sm(Co0.720Fe0.200Cu0.055Zr0.025)7.5 permanent magnet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.