Abstract

The stability of microstructure and of microchemistry in melt-spun precipitation-hardened Sm(Co,Fe,Cu,Zr)z magnets at high temperature and its effect on the magnetic properties, especially the coercivity at room temperature, were investigated by transmission electron microscopy, nanoprobe chemical analysis, and magnetic measurements. A very large gradient of the Cu content within the 1:5-type cell boundary phase was observed in highly coercive melt-spun Sm(Co,Fe,Cu,Zr)z magnets with uniform cellular structure. After an additional isothermal aging at 850 °C for 5 min, the coercivity is reduced dramatically from 3 T to 0.16 T. This is accompanied by the disappearance of the large gradient of Cu content within the cell boundary phase. Thus, it is proposed that the high coercivity in 2:17 Sm-Co magnets originates from the large gradient of domain wall energy within the Sm(Co,Cu)5 cell boundary phase. This gradient is caused by a very rapid phase separation taking place within the cell boundary phase during slow cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.