Abstract

We present the results of the magnetic domain structures of BaAl2Fe10O19 nanopowders prepared by a self-propagating combustion process. Amorphous precursors were calcined at 850 °C for 2 h with NaCl (Sample I) and without NaCl (Sample II). The transmission electron microscope and atomic force microscopy images evidently suggested that there was a topological difference between Sample I (plate- and rod-shaped nanopowders) and Sample II (rod-shaped nanoparticles). We observed a considerably enhanced coercivity in Sample II, compared to Sample I. This result can be understood by the change in the magnetic domain width due to the shape effect of the nanopowders, which was investigated by measuring the field-controlled magnetic force microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.