Abstract

This article explores the applicability of numerical homogenization techniques for analyzing transport properties in real foam samples, mostly open-cell, to understand long-wavelength acoustics of rigid-frame air-saturated porous media on the basis of microstructural parameters. Experimental characterization of porosity and permeability of real foam samples are used to provide the scaling of a polyhedral unit-cell. The Stokes, Laplace, and diffusion-controlled reaction equations are numerically solved in such media by a finite element method in three-dimensions; an estimation of the materials’ transport parameters is derived from these solution fields. The frequency-dependent visco-inertial and thermal response functions governing the long-wavelength acoustic wave propagation in rigid-frame porous materials are then determined from generic approximate but robust models and compared to standing wave tube measurements. With no adjustable constant, the predicted quantities were found to be in acceptable agreement with multi-scale experimental data and further analyzed in light of scanning electron micrograph observations and critical path considerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.