Abstract

The thermo-physical properties of open cell metal foams depend on their microscopic structure. Various virtual ideal periodic isotropic foam samples having circular, square, hexagon, diamond, and star strut cross sections with various orientations are realized in the porosity range from 60 to 95%. The anisotropy of the original foam sample is then realized by elongating in one direction by a factor Ω, while a factor of 1/√Ω is applied along the two perpendicular directions to conserve the porosity of the original sample. A generalized analytical model of geometrical parameters has been proposed and all results are fully compared with the original measured data. Three-dimensional heat conduction numerical simulations at the pore scale have been performed, which allow determining the macroscale physical properties, such as the effective thermal conductivity, using the volume averaging technique. Two analytical models are derived simultaneously in order to predict the intrinsic solid phase conductivity (λs) and effective thermal conductivity (λeff). A modified correlation term (F) is introduced in the analytical resistor model to take into account the thermal conductivities of constituent phases and a modified Lemlich model is derived. The analytical results of the effective thermal conductivity are compared with the numerical data and excellent agreement is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.