Abstract

Abstract The depth and nature of the subsurface damage in a silicon wafer will limit the performance of IC components. Damage microstructures of the silicon wafers ground by the #325, #600, and #2000 grinding wheels was analyzed. The results show that many microcracks, fractures, and dislocation rosettes appear in the surface and subsurface of the wafer ground by the #325 grinding wheel. No obvious microstructure change exists. The amorphous layer with a thickness of about 100 nm, microcracks, high density dislocations, and polycrystalline silicon are observed in the subsurface of the wafer ground by the #600 grinding wheel. For the wafer ground by the #2000 grinding wheel, an amorphous layer of about 30 nm thickness, a polycrystalline silicon layer, a few dislocations, and an elastic deformation layer exist. In general, with the decrease in grit size, the material removal mode changes from micro-fracture mode to ductile mode gradually.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.