Abstract

The interfacial heat transfer coefficient (IHTC) is taken as one of the most important factors affecting the accuracy of the simulation. In the present paper, the IHTC variation with temperature was obtained by an inverse heat conduction method. Then, a 3D cellular automaton-finite element method was adopted to predict the microstructure of an Al-Cu alloy based on the identified IHTC. It was found that the IHTC was of prime importance for the precise simulation of solidification microstructure, especially in the grains distribution. In addition, the simulated results using the IHTC variation with temperature were found to exhibit a better agreement with the experimental results than those using the constant value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.