Abstract

In this paper, the effect of the polycrystalline microstructure on crack-tip opening displacement and crack closure is investigated for microstructural short plane strain fatigue cracks using the finite-element method. To this end, cracks are introduced in synthetically generated microstructures and the grain properties are described using a single crystal plasticity model with kinematic hardening. Additionally, finite-element calculations without resolved microstructure and von Mises plasticity with kinematic hardening are performed. Fully-reversed strain-controlled cyclic loadings are considered under large-scale yielding conditions as typical for low-cycle fatigue problems. The crack opening stress and the cyclic crack-tip opening displacement are significantly influenced by the local grain structure. While the stabilized crack opening stresses obtained with the microstructure-based finite-element model are in good accordance with the von Mises plasticity results, the differences in the cyclic crack opening displacement are addressed to the asymmetric plastic strain fields in the plastic wake behind the crack-tip of the microstructure-based model. The asymmetric plastic strain fields result in discontinuous and premature contact of the crack flanks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.