Abstract

Obtaining a good statistical representation of material microstructures is crucial for establishing robust process–structure–property linkages and machine learning techniques can bridge this gap. One major difficulty in leveraging recent advances in deep learning for this purpose is the scarcity of good quality data with enough metadata. In machine learning, similarity metric learning using Siamese networks has been used to deal with sparse data. Inspired by this, the authors propose a Siamese architecture to learn microstructure representations. The authors show that analysis tasks such as the classification of microstructures can be done more efficiently in the learned representation space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.