Abstract
Discuss foundational concepts for artificial intelligence (AI) and review recent literature on its application to aortic disease. Machine learning (ML) techniques are rapidly evolving for the evaluation of aortic disease - broadly categorized as algorithms for aortic segmentation, detection of pathology, and risk stratification. Advances in deep learning, particularly U-Net architectures, have revolutionized segmentation of the aorta and show potential for monitoring the size of aortic aneurysm and characterizing aortic dissection. These algorithms also facilitate application of more complex technologies including analysis of flow dynamics with 4D Flow magnetic resonance imaging (MRI) and computational simulation of fluid dynamics for aortic coarctation. In addition, AI algorithms have been proposed to assist in 'opportunistic' screening from routine imaging exams, including automated aortic calcification score, which has emerged as a strong predictor of cardiovascular risk. Finally, several ML algorithms are being explored for risk stratification of patients with aortic aneurysm and dissection, in addition to prediction of postprocedural complications. Multiple ML techniques have potential for characterization and risk prediction of aortic aneurysm, dissection, coarctation, and atherosclerotic disease on computed tomography and MRI. This nascent field shows considerable promise with many applications in development and in early preclinical evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.