Abstract

Effects of Zr addition and annealing treatment on the formation, microstructure and magnetic properties of Nd12.3Fe81.7−x Zr x B6.0 (x=0−3.0) ribbons melt-spun and annealed have been systematically investigated by means of vibrating sample magnetometer (VSM), differential scanning calorimeter (DSC), X-ray diffraction (XRD), and high resolution scanning electron microscopy (HRSEM). Phase analysis reveals that Nd2Fe14B is single-phase material. It has been found that the intrinsic coercivity H ci of the optimally processed Nd12.3Fe81.7−x Zr x B6.0 ribbons increases monotonically from 751.7 kA/m for x=0 to 1005.3 kA/m for x=3.0. The remanence polarization J r and maximum energy product (BH)max increase first with Zr addition, then slightly decrease with further increasing Zr content. Optimum magnetic properties with J r=1.041 T, H ci=887.5 kA/m and (BH)max=175.2 kJ/m3 have been achieved for the ribbons with x=1.5. The significant improvement of magnetic properties originates from the finer grains of the ribbons by introducing Zr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.