Abstract
Effect of Zr addition on microstructure, magnetic properties and thermal stability of Nd 12.3Fe 81.7– x Zr x B 6.0 ( x=0–3.0) ribbons melt-spun and annealed was investigated. Magnetic measurement using vibrating sample magnetometer (VSM) revealed that Zr addition was significantly effective in improving the magnetic properties at room temperature. The intrinsic coercivity H ci of the optimally processed ribbons increased monotonically with increasing Zr content, from 751.7 kA/m for x=0 to 1005.3 kA/m for x=3.0. Unlike the coercivity, the remanence polarization J r increased first with Zr addition, from 0.898 T up to 1.041 T at x=1.5, and then decreased with further Zr addition. The maximum energy product ( BH) max behaved similarly, increasing from 103.1 kJ/m 3 to a maximum of 175.2 kJ/m 3 at x=1.5. Microstructure studies using atomic force microscopy (AFM) and transmission electron microscopy (TEM) had shown a significant microstructure refinement with Zr addition. The absolute values of temperature coefficients of induction and coercivity were significantly increased with increasing Zr content, indicating that Zr was detrimental to thermal stability of the melt-spun Nd 2Fe 14B-type material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.