Abstract

Thin films of gallium-phosphorus-titanium (Ga-P-Ti) alloys were prepared on glass substrates at 573 K by an asymmetric bipolar pulsed direct current sputtering technique using an argon atmosphere and targets made from gallium phosphide (GaP) powder and metallic titanium (Ti), at the surface ratios of 8:1, 5:1, 2:1 and 1:1 GaP to Ti (GaP:Ti) on the sputtered area. Examination by X-ray diffraction, transmission electron microscopy, and field emission scanning electron microscope indicated that the as-deposited films from the sputtering targets having GaP:Ti ratios of 8:1, 5:1, and 2:1 were polycrystalline with the cubic zinc-blende crystal structure having GaP as the host material, i.e., Ti-doped GaP. Elemental compositions of the film obtained from the target at a GaP:Ti ratio of 5:1 closely resembled the theoretically predicted intermediate band compound Ga4P3Ti. It was projected that the Ga4P3Ti compound could be fabricated by co-sputtering of GaP and Ti from a single target having the surface area ratio GaP:Ti of 3.5:1. Optical transmission and reflection spectra, temperature dependence of electrical resistivity, and light response of the electrical resistivity showed semiconductor-like behavior for the films obtained from the targets with the GaP:Ti of 8:1 and 5:1, and were metal-like for those deposited from the other targets. Optical band gaps determined from the transmission spectrum of the semiconducting films by Tauc's expression for indirect transition were 1.2–1.5 eV. The results of the study could provide an alternative route for fabricating the intermediate band material based on the Ga-P-Ti system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.