Abstract

A rheomixing process has been developed for processing immiscible metallic liquids. In this paper, a binary Zn–Pb system is used to demonstrate the rheomixing process. During the rheomixing process, liquid Zn and Pb are premixed in the miscibility gap using a propeller mixer to achieve coarse dispersion of Pb liquid droplets in Zn liquid matrix. The coarse mixture is then transferred into a twin-screw rheomixer, where it is continuously cooled down to a temperature below the monotectic temperature to form a semi-solid slurry under the intensive shear mixing action of the twin-screw rheomixer. The semi-solid slurry is finally extruded through a cylindrical extrusion die to form a continuous bar. The microstructure of immiscible alloys produced by this method is characterised by a fine dispersion of Pb particles distributed uniformly throughout a Zn matrix. The effects of rheomixing temperature and alloy composition on the resultant microstructure have been investigated. It has been found that the average size of Pb particles increases linearly with increasing rheomixing temperature and with increasing Pb concentration in the Zn–Pb alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.