Abstract

The interface of ZnTe/Si(211) grown by molecular beam epitaxy was investigated by high-resolution transmission electron microscopy. Several types of defects such as misfit dislocations, stacking faults, agglomerations of vacancies, and precipitates were observed and studied by electron microscopy at the ZnTe/Si interface. The distribution of misfit dislocations at the interface was revealed with the assistance of the fast Fourier transformation filtering technique. A stick-and-ball interface model including misfit dislocation geometry is proposed. The possible origins of the stacking faults, vacancies, and precipitates are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.