Abstract

The aim of the current work is to investigate the effect of SiC particle weight percent and rolling passes on Al/Cu/SiC laminated composites, fabricated by accumulative roll-bonding (ARB) and cross-accumulative roll-bonding (CARB) processes. The optical microscopy (OM) images of composites revealed that despite the good bonding of the layers, they underwent plastic instabilities as a consequence of strain hardening of the layers. However, these instabilities occurred more in ARBed composites than in composites fabricated by the CARB process. This is because in the latter process, the composites are rolled in two directions, which leads to better strain distribution. Furthermore, with an increase in passes, SiC particles were well distributed in the matrix and interfaces. The mechanical findings showed that, by increasing passes, there was a growth in the values of strengths and elongation. This behavior is believed to be related to increased work-hardening of layers, better distribution of reinforcing particles, and an enhanced bonding of interfaces at higher rolling passes. In addition, the results of thermal conductivities showed a downward trend with an increase in passes; in fact, the increased number of Al/Cu interfaces declined the heat conduction of composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.