Abstract

Current liquid crystal (LC) lenses cannot achieve lossless arbitrary movement of the optical axis without mechanical movement. This article designs a novel bottom electrode through simulation and optimization, which forms a special LC lens with an Archimedean spiral electrode, realizing a 3D LC wedge and an arbitrarily movable LC lens. When only the bottom electrode is controlled, it achieves a maximum beam steering angle of 0.164°, which is nearly an order of magnitude larger than the current design. When the top and bottom electrodes are controlled jointly, a 0.164° movement of the lens optical axis is achieved. With focal length varies, the movement of the optical axis ranges from zero to infinity, and the lens surface remains unchanged during movement. The focus can move in a 3D conical area. When the thickness of the LC layer is 30 μm, the fastest response time reaches only 0.635 s, much faster than now.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.